Additional Table S1- S9. Additional Figure S1 and S6

Compound	Colour	Molecular formula	Molecular weight	Elemental Analysis Found(cal.)%		Molar conductance		
				С	Ν	0	Μ	$\frac{\Omega^{-1} \text{ cm}^2}{\text{Mol}^{-1}}$
Ligand	Light Yellow	$C_{18}H_{16}N_2O_2$	292.12	73.95	9.58	10.95	-	-
CuL ¹	Dark Green	$C_{40}H_{40}N_4O_9Cu$	783.21	61.26	7.14	18.36	8.10	12
NiL ¹	Light brown	$C_{40}H_{46}N_4O_{12}Ni$	832.25	57.64	6.72	23.03	7.04	13
CoL ¹	Orange	$C_{40}H_{46}N_4O_{12}Co$	833.76	57.32	6.72	23.03	8.60	18
ZnL ¹	Yellowish	$C_{40}H_{42}N_4O_{10}Zn$	802.22	59.74	6.97	19.89	9.97	15
	Brown							
$Cu L^1 L^2$	Black	$C_{31}H_{30}N_3O_8Cu$	636.14	58.53	6.61	20.12	9.99	23
Ni $L^1 L^2$	Brown	C ₃₁ H ₃₆ N ₃ O ₁₁ Ni	684.17	54.33	6.13	25.68	8.56	19
Co L ¹ L ²	Red brown	C ₃₁ H ₃₆ N ₃ O ₁₁ Co	685.17	54.31	6.13	25.67	7.07	11
$\operatorname{Zn} \operatorname{L}^1 \operatorname{L}^2$	Dirty white	$C_{31}H_{32}N_3O_9Zn$	654.14	56.76	6.41	21.95	8.13	15

Supplementary Table 1. Physical studies and analytical data of ligand, $\rm ML^1 \,\&\, \rm ML^1 L^2$

Supplementary Table 2. FT-IR absorption data of L, $ML^1 \& ML^1L^2$

Compound	Lattic	v(CH=N)	v(-OCH ₃)	v(CH ₂ =CH ₂)	8 Hyc	droxy	v(M-N)
	Water	(cm ⁻¹)	(cm ⁻¹)	(cm ⁻¹)	quin	oline	(cm^{-1})
	Molecule				v(M-N)	v(M-O)	
	(cm ⁻¹)				(cm ⁻¹)	(cm ⁻¹)	
Ligand	-	1581	2833	2946	-	-	-
CuL ¹	-	1577	2828	2927	-	-	473
NiL ¹	3300	1576	2828	2927	-	-	473
CoL ¹	3404	1577	2829	2895	-	-	495
ZnL^1	3394	1575	2829	2900	-	-	472
$Cu L^1 L^2$	3442	1580	2832	2944	495	519	483
Ni $L^1 L^2$	3435	1574	2829	2950	497	493	472
Co L ¹ L ²	3381	1573	2828	2952	496	519	493
$\operatorname{Zn} \operatorname{L}^1 \operatorname{L}^2$	-	1573	2828	2949	491	533	472

Supplementary Table 3. The Absorption spectrum and magnetic moment data analysis of the L, ML^1 & ML^1L^2

Compounds	Absorption(nm)	Band assignment	Geometry	μ _{eff} (BM)	
Ligand(L)	270	INCT			
	369	INCT			
	270	INCT			
	302	INCT	Square planar	1.05	
	439	$^{2}T_{2g} \rightarrow ~^{2}E_{g}$		1.93	
	264	INCT			
[Co(L)]	382	INCT	Totrobodrol	4 41	
	450	${}^{4}T_{1g}(F) - {}^{4}T_{1g}(P)$	Tetraneurai	4.41	
	510	${}^{4}T_{1g}(F) - {}^{4}A_{2g}(F)$			
	260	INCT			
[Ni(L)]	342	INCT	Square planar	3.81	
	381	$^{3}A_{2g}(F) - ^{3}T_{1g}(P)$	Square plana	5.01	
	470	${}^{3}A_{2g}(F) - {}^{3}T_{1g}(F)$			
$[\mathbf{Zn}(\mathbf{I})]$	264	INCT			
	307	INCT	Square planar		
	392	LMCT			
1 2	261	INCT	Distorted		
$[\operatorname{Cu} \operatorname{L}^1 \operatorname{L}^2]$	317	INCT	square planar	1.81	
	440	$^{2}B_{1g} \rightarrow ^{2}A_{1g}$	square plana		
	263	INCT			
[Ni $L^1 L^2$]	393	INCT	Tetrahedral	4 83	
	457	$^{4}_{4}T_{1g}(F) - ^{4}_{4}T_{1g}(P)$	Tetranearai	1.05	
	511	$^{4}T_{1g}(F) - ^{4}A_{2g}(F)$			
	268	INCT			
$[\mathbf{Co} \mathbf{L}^1 \mathbf{L}^2]$	309	INCT	Square planar	3.05	
	392	$^{3}A_{2g}(F) - ^{3}T_{1g}(P)$	Square plana	5.05	
	550	$^{3}A_{2g}(F) - ^{3}T_{1g}(F)$			
1 3	261	INCT			
[Zn L1 L2]	312	INCT	Square planar		
	482	LMCT			

Supplementary Table 4. Mass spectral data of the L, ML¹ & ML¹L²

Compound	Cal.Mass	Obt.
	(m/z)	Mass(m/z)
Ligand	292.12	294.05
CuL^1	783.21	781.99
NiL^1	832.25	833.28
CoL ¹	833.76	835.03
ZnL ¹	802.22	802.84
$Cu L^1 L^2$	636.14	636.14
Ni $L^1 L^2$	684.17	678.48
$\operatorname{Co} \operatorname{L}^1 \operatorname{L}^2$	685.17	683.43

Zn $L^1 L^2$ 654.14 647.24

Compound	20 of the	θ	Cos θ	β	Crystalline Size in
	maximum	(Degrees)			(Å)
	intensity peak				$t = 0.9\lambda/\beta cos\theta$
	(Degrees)				
Ligand	16.6283	8.31415	0.9894	0.001391	100.7488
CuL^1	16.723	8.3615	0.9893	0.00281	49.87665
NiL^1	16.723	8.3615	0.9893	0.001882	74.45885
CoL^1	16.4863	8.24315	0.9896	0.001796	78.0251
ZnL^1	11.8465	5.92325	0.9946	0.002163	64.44712
$Cu L^1 L^2$	16.84626	8.42313	0.9892	0.002159	64.92777
Ni $L^1 L^2$	16.94653	8.47326	0.9890	0.002938	47.72123
$\operatorname{Co} \operatorname{L}^1 \operatorname{L}^2$	16.8964	8.4482	0.9891	0.004728	29.65052
$Zn L^1 L^2$	16.8964	8.4482	0.9890	0.003416	41.03534

Supplementary Table 5. Crystalline size of the compounds

Supplementary Table 6. Inhibition indices of Schiff base ligand, ML¹ and ML¹L² complexes

against E. coli, S. aureus, and Candida albicans

Sample Marking	Sample Concentration (µg/ml)	Zone of inhibition in (mm)		Sample Concentration (µg/ml)	Zone of inhibition in (mm)
-		<i>S</i> .	E. coli		Candida albicans
		aureus			
Standard	Tetracyclin	13	12	Fluconazole	12
Ligand		NA	10		2
CuL^1		5	8		5
NiL^1		NA	7		4
CoL^1		7	9		8
ZnL^1	100	6	6	100	9
$Cu L^1 L^2$		12	12		10
Ni $L^1 L^2$		10	9		6
$\operatorname{Co} \operatorname{L}^1 \operatorname{L}^2$		8	9		11
$\operatorname{Zn} \operatorname{L}^1 \operatorname{L}^2$		7	5		8

Supplementary Table 7. Anti-Inflammatory activity of Schiff base ligand, CuL¹ L²and CuL¹complexes

Compounds		IC ₅₀						
	20	40	60	80	100	(µg/ml)		
	% of inhibition at 560 nm							
Standard	56.28	60.14	67.49	72.78	78.69	0.592		
Ligand	32.23	45.86	49.62	66.91	71.42	53.58		
CuL ¹ L ²	42.53	56.77	69.79	71	79.51	28.50		
CuL ¹	38.34	43.6	59.39	61.65	72.93	48.14		

Supplementary Table 8. Anti-diabetic activity data of Schiff base ligand, CuL¹ L²and CuL¹ complexes

Compounds		Concentration (µg/ml)							
	10 20 30 4			40	50	(µg/ml)			
	9	% of inhibition at 540 nm							
Ligand	37.33	42.80	43.16	45.54	48.98	54.80			
CuL ¹ L ²	47.08	65.51	68.25	71.34	72.88	3.86			
CuL ¹	53.62	61.59	62.66	63.85	66.34	11.91			

Supplementary Table 9. Anti-Cancer activity data of the Schiff base ligand, CuL¹ L² and CuL¹complexes

Ligand Concentration (µg / ml)	Ligand Cell Viability %	IC ₅₀ (μg / ml)	CuL ¹ L ² Cell Viability %	IC ₅₀ (μg / ml)	CuL ¹ Cell Viability %	IC ₅₀ (μg / ml)
3.125	97.8545888		89.91646778		97.09697344	
6.25	90.40524434		74.46300716		87.3996294	
12.5	71.81168057	32.63	59.78520286	24.92	70.84620136	30.55
25	46.72228844		37.58949881		48.98085238	
50	33.49225268		24.34367542		26.93020383	

Supplementary Figure 1. FT-IR spectra of L, $ML^1 \& ML^1L^2$

Supplementary Figure 2. ¹H NMR of Schiff base ligand (L)

Supplementary Figure 3. ¹³C NMR for Schiff base ligand(L)

Supplementary Figure 4. Mass spectra of L, $ML^1 \& ML^1L^2$

Supplementary Figure 5. EPR spectra for CuL^1 and $Cu L^1L^2$ complexes

Supplementary Figure 6. XRD analysis of L, ML¹ & ML¹L²